Teaching a Homeless Man to Fly

decathlon-inverted

Question: When you’re in a room with other people, how can you tell if one of them is a pilot?
Answer: Simple. He’ll tell you.

Aviators are a proud lot, and with good reason. Ours is quite an exclusive club. Despite that fact, I’ve long believed that learning to fly actually has wide appeal among the general public. From my earliest days in the industry, those who discovered I was a pilot would invariably show great interest in my aeronautical activities. More often than not, I would come away from the conversation with the feeling that they were envious of my ability to defy gravity and soar with the birds.

The question then is why more individuals don’t (as they say at Nike) “just do it”. For starters, it requires a lot of money. Then there’s the logistics, the time commitment, and the challenge inherent in weaving one’s way through the modern flight training maze. Changes in instructors, weather delays, antiquated tests and teaching techniques, and so on. Many look skyward, but few take the bull by the horns and see that dream through to completion.

On the other hand, sometimes it’s those who are the least well equipped to succeed who make it to the finish line. Ward Welvaert, a professional contract and ferry pilot, recently wrote about how he taught a homeless man to fly:

Something was different about Patrick but I couldn’t quite figure out what it was. I was young(ish) and struggling to make a living as most all flight instructors do. I didn’t feel like it was my place to decide who should be taking flight instruction or who should not – as long as the person is safety oriented and shows good judgment. I don’t remember who told me but someone pulled me aside in the lobby of the FBO and asked if I knew Patrick was spending the nights sleeping in his car out in the airport parking lot. Apparently people had noticed Patrick sleeping in his car and asked if he was OK. Patrick seemed to be more comfortable talking to the line men and he had confided in one of them, told them he lived out of his car, he’d spend a week at the airport and then go to work as a road construction laborer for a few weeks. Every time he’d go away to work he’d save his money and then come back to the airport to fly.

Ward’s post reminded me of something I’d almost forgotten: that I too once taught a homeless person to fly. In my case, the student was a fairly young man in his early 20s who already held a private pilot certificate. James ended up on my schedule because he wanted to fly acro. At our first meeting, there was no immediate indication that he was at all different from any other student at the FBO. His clothing and mannerisms were completely conventional. He was quite energetic about the aerobatic course and talked at length about how the ultimate goal for him in aviation was always the freedom and excitement of all-attitude flying.

As with any new student, the process started with a bit of paperwork. When the forms were handed to me, I noticed he had left the “contact” section completely blank. No phone number, e-mail, or address. I asked about that and James said he didn’t have any of those things. He was couch-surfing in order to conserve every dollar possible for flying. He didn’t even own a car. This guy biked to the airport and worked in the pilot shop to earn money. How’s that for single-minded dedication?

Couch-surfing is not illegal. Nor is riding a bike or lacking a cell phone. So eventually the training began, and as I recall, James was a pleasant and upbeat personality in the cockpit, not to mention a good stick. Every CFI craves students like that. You know, the ones that make you look brilliant without having to do too much work?

Anyway, he was making respectable progress through the 10-12 flight hour course when suddenly things came to a screeching halt. He completely disappeared off the schedule, and despite asking around, I couldn’t figure out what happened to him. The guy just vanished into thin air. I was truly disappointed. Had my instruction been inadequate, I wondered? Did he finally run out of cash? Was he popped for selling meth or something?

It wasn’t until a month or two later that someone informed me that he’d heard James was hit by a car one day while riding his bike to the airport. The only reason they knew that much was because James had taken the time to call the pilot shop and say he wouldn’t be able to make it in to work. Nobody had details, like which hospital he’d been taken to or how badly he’d been hurt. That was as close as I ever got to figuring out where he went.

I’ve known other itinerant people, souls like kites who were simply meant to travel in whichever direction the wind carried them, but given the resources and support required for successful flight training, I was impressed with James’s dedication to a very challenging goal. It never entered his mind that it was unachievable, nor did I ever hear him complain about the lack of creature comforts in his life. He was flying, it made him happy, and that was all there was to it.

In retrospect, his status may have been an advantage because James had no family or financial commitments to consume his resources or energy. He didn’t have much, but everything he did have was directed toward flying.

I’ve no idea whether he ever completed aerobatic training, but unless that car seriously and permanently disabled him, I can’t imagine the answer would be “no”. It just wasn’t in his character to be deterred. How can you not admire that in a person?

James, like all memorable students, wasn’t just a learner but a teacher as well. He taught me a valuable lesson about persistence and dedication, two very American qualities which have become the exception rather than the rule in our society. Whenever someone tells me they could never possibly find the time or money to pursue flying — or any dream for that matter — I always think about James, and I know the truth: if there’s a will, there’s always a way.

Upset Recovery Training: Not Just a Fad

Boeing-787-9-Aerobatics

Upset recovery training has been all the rage over the past couple of years. A Google search of that exact phrase returns more than 24,000 results. There’s a professional association dedicated to such training. ICAO even declared aircraft upsets to be the cause of “more fatalities in scheduled commercial operations than any other category of accidents over the last ten years”.

Nevertheless, I get the impression that some folks wonder if it isn’t more of a safety fad than an intrinsic imperative. It’s hard to blame them. You can hardly open a magazine or aviation newsletter these days without seeing slick advertisements for this stuff. When I was at recurrent training a couple of months ago, CAE was offering upset recovery training to corporate jet pilots there in Dallas. “If I wanted to fly aerobatics, I’d fly aerobatics!” one aviator groused.

He didn’t ask my opinion, but if he had, I’d remind him that 99% of pilots spend 99% of their time in straight and level flight — especially when the aircraft in question is a business jet. I’m not exaggerating much when I say that even your typical Skyhawk pilot is a virtual aerobat compared to the kind of flying we do on charter and corporate trips. For one thing, passengers pay the bills and they want the smoothest, most uneventful flight possible.

In addition, these jets fly at very high altitudes – typically in the mid-40s and even as high as 51,000 feet. Bank and pitch attitudes tend to stay within a narrow band. Yaw? There shouldn’t be any. The ball stays centered, period. We aim for a level of smoothness that exceeds even that of the airlines. Passengers and catering may move about the cabin frequently during a flight, but it shouldn’t be because of anything we’re doing up front.

Fly like that for a decade or two, logging thousands and thousands of uneventful, straight-and-level hours and the thought of all-attitude flying can become – to put it mildly – uncomfortable. I’ve even seen former fighter pilots become squeamish at the thought of high bank or pitch angles after twenty years of bizjet flying.

Unfortunately, there are a wide variety of things that can land a pilot in a thoroughly dangerous attitude: wind shear, wake turbulence, autopilot failure, mechanical malfunction (hydraulic hard-overs, asymmetric spoiler or flap deployment, etc.), inattention, and last but not least, plain old pilot error. Look at recent high-profile accidents and you’ll see some surprisingly basic flying blunders from the crew. Air France 447, Colgan 3407, and Asiana 214 are just three such examples. It may not happen often, but when it does it can bite hard.

So yes, I think there is a strong need for more manual flying exposure in general, and upset recovery training in particular. This isn’t specific to jet aircraft, because some light aircraft have surpassed their turbine-powered cousins in the avionics department. I only wish the 1980’s era FMS computer in my Gulfstream was as speedy as a modern G1000 installation.

Defining the Problem

To the best of my knowledge, neither the NTSB or FAA provide a standard definition for “upset”, but much like Supreme Court Justice Potter Stewart, we pretty much know it when we see it. The term has generally come to be defined as a flight path or aircraft attitude deviating significantly from that which was intended by the pilot. Upsets have led to loss of control, aircraft damage or destruction, and more than a few fatalities.

As automation proliferates, pilots receive less hands-on experience and a gradual but significant reduction in stick-and-rudder skill begins to occur. The change is a subtle one, and that’s part of what makes it so hazardous. A recent report by the FAA PARC rulemaking workgroup cites poor stick and rudder skills as the number two risk factor facing pilots today. The simple fact is that windshear, wake turbulence, and automation failures happen.

The purpose of upset recovery training is to give pilots the tools and experience necessary to recognize and prevent impending loss of control situations. As the saying goes, an ounce of prevention is worth a pound of cure, and that’s why teaching recovery strategies from the most common upset scenarios is actually a secondary (though important) goal.

What about simulators? They’ve proven to be an excellent tool in pilot training, but even the most high fidelity Level D sims fall short when it comes to deep stalls and loss of control scenarios. For one thing, stall recovery is typically initiated at the first indication of stall, so the techniques taught in the simulator may not apply to a full aerodynamic stall. Due to the incredibly complex and unpredictable nature of post-stall aerodynamics, simulators aren’t usually programmed to accurately emulate an aircraft in a deeply stalled condition. Thus the need for in-aircraft experience to supplement simulator training.

Upset Recovery vs. Aerobatics

It’s important to note that upset recovery training may involve aerobatic maneuvering, but it does not exist to teach aerobatics. Periodically over the years, discussions on the merits of this training will cause a co-worker to broach the subject of flying an aerobatic maneuver in an airplane which is not designed and built for that purpose. This happened just the other day, actually. Typically they’ll ask me if, as an aerobatic pilot, I would ever consider performing a barrel or aileron roll in the aircraft.

I used to just give them the short answer: “no”. But over time I’ve started explaining why I think it’s such a bad idea, even for those of us who are trained to fly such maneuvers. I won’t touch on the regulations, because I think we are all familiar with those. I’m just talking about practical considerations.

Normal planes tend to have non-symmetrical airfoils which were not designed to fly aerobatics. They feature slower roll rates, lower structural integrity under high G loads, and considerably less control authority. You might have noticed that the control surfaces on aerobatic airplanes are pretty large — they are designed that way because they’re needed to get safely into and out of aerobatic maneuvers.

Clay Lacy has been flying an airshow sequence in his 1966 Lear 24 for many years.

Clay Lacy has been flying an airshow sequence in his 1966 Lear 24 for many years.

That’s not to say an airplane with small control surfaces like a business jet or light GA single cannot perform aerobatics without disaster striking. Clay Lacy flies an airshow sequence in his Learjet. Duane Cole flew a Bonanza. Bob Hoover used a Shrike Commander. Sean Tucker flew an acro sequence in a Columbia (now known as the Cessna TTx). However, the margins are lower, the aerobatics are far more difficult, and pilots not experienced and prepared enough for those things are much more likely to end up hurt or dead.

Sean Tucker will tell you that the Columbia may not recover from spins of more than one or two turns. Duane Cole said the Bonanza (in which he did inverted ribbon cuts) had barely enough elevator authority for the maneuver, and it required incredible strength to hold the nose up far enough for inverted level flight. Bob Hoover tailored his performance to maneuvers the Shrike could do — he’ll tell you he avoided some aerobatic maneuvers because of the airplane’s limitations.

Knowing those limitations and how to deal with them — that’s where being an experienced professional aerobatic pilot makes the difference. And I’m sure none of those guys took flying those GA airplanes upside down lightly. A lot of planning, consideration, training and practice went into their performances.

Now, consider the aircraft condition. Any negative Gs and stuff will be flying around the cabin. Dirt from the carpet. Manuals. Items from the cargo area. Floor mats. Passengers. EFBs. Drinks. Anything in the armrest or sidewall pockets. That could be a little distracting. Items could get lodged behind the rudder pedals, hit you in the head, or worse.

If the belts aren’t tight enough, your posterior will quickly separate from the seat it’s normally attached to. And I assure you, your belts are not tight enough. Getting them that way involves cinching the lap belt down until it literally hurts. How many people fly a standard or transport category aircraft that way?

Now consider that the engine is not set up for fuel and oil flow under negative Gs. Even in airplanes specifically designed for acro, the G loads move the entire engine on the engine mount. In the Decathlon you can always see the spinner move up an inch or two when pushing a few negative Gs. Who knows what that would do with the tighter clearances between the fan and engine cowl on an airplane like the Gulfstream?

Next, let’s consider trim. The jet flies around with an electric trim system which doesn’t move all that quickly. The aircraft are typically trimmed for upright flight. That trim setting works heavily against you when inverted, and might easily reach the point where even full control deflection wouldn’t be sufficient.

I could go on, but suffice it to say that the more I learn about aerobatics, the less I would want to do them in a non-aerobatic aircraft – and certainly not a swept wing jet! Sure, if performed perfectly, you might be just fine. But any unusual attitude is going to be far more difficult — if not outright impossible — to recover from.

Dang it, Tex!

Every time someone references Tex Johnson’s famous barrel roll in the Boeing 707 prototype, I can’t help but wish he hadn’t done that. Yes, it helped sell an airplane the company had staked it’s entire future on, but aerobatic instructors have been paying the price ever since.

Aerobatic and upset recovery training: good. Experimenting with normal category airplanes: bad. Very bad.


This post first appeared on the AOPA Opinion Leaders blog.

Breaking the Rules: Teaching Snap Rolls

Pitts S-2B

Every instructor knows that airplanes make poor classrooms. The noise, vibration, cramped space, communication challenges, interruptions from ATC, and the need to watch for traffic while monitoring location, airspace, and aircraft systems all conspire to prevent effective learning. Oh, and let’s not forget the exorbitant cost of operating this aluminum schoolroom.

Well if it’s true for the docile trainer, imagine the high-performance aerobatic airplane. They’re even worse than a standard aircraft because aerobatic steeds are designed for performance above all else. Those creature comforts you’re used to in a typical GA airplane? All gone.

Continue reading

A True Story: Landing at the Wrong Airport

757-landing

I wrote a bit about wrong-airport landings last month after the Dreamlifter made an unscheduled detour to a small civilian airport in Wichita.

They say things happen in threes, so it wasn’t surprising that the faux pas keeps recurring. Next was a Southwest Airlines flight — which really could have ended badly as they put their 737 down on a far shorter runway (3,738 feet) than any I’ve seen a Boeing airliner utilize.

Speaking of landing distance, for most Part 91 pilots, as long as you can stop on the available runway without bending anything, you’re good to go from a legal standpoint. Airlines and charter operators, on the other hand, are required to have a significant safety margin on their landing runways. 14 CFR 121.195(b) dictates that a full stop landing be possible within 60 percent of the effective length of the runway. To put that into perspective, John Wayne Airport’s runway 19R is considered to be one of the shortest used by major airlines on a regular basis. That runway is 5,700 feet long, so landing on a 3,700 foot strip — at night, no less — must have been exciting for all concerned.

The third (and hopefully last one) for a while was a Boeing 787 which narrowly managed to avert landing at the wrong field, but only with the help of an alert air traffic controller.

I related the story of my own Wichita experience in order to explain how easily one airport can be mistaken for another. But I can take it a step further: I once witnessed a very memorable wrong-airport landing.

Intruder Alert

It was 2008, and I was in Arizona for an aerobatic contest being held at the Marana Regional Airport (which also happens to be where all those Starships are awaiting their final fate). Ironically, a number of FAA inspectors had been on-site just 24 hours earlier, ramp checking every pilot and aircraft as they arrived for the competition. Too bad they didn’t show up the next day, because they missed quite a show.

At Marana, the aerobatic box is located two miles southeast of the field, and at the time the incident occurred the contest was in full swing. These events require a large contingent of volunteers to operate, so traditionally competitors will help with contest duties when their category is not flying. I was sitting just outside the aerobatic box, judging a combined group of Advanced power and glider pilots when I overheard someone at the chief judge’s table calling out a traffic threat. Despite waivers, NOTAMs, ATIS broadcasts, and other information about the contest’s presence, it’s not unheard of for a non-participating aircraft to wander through the aerobatic box.

The chief judge had just cleared a new competitor into the box, so he immediately called back and told him to return to the holding area and keep an eye out for the encroaching airplane. I scanned the sky and visually acquired a miniscule speck in the air south of the box. I figured it was a small general aviation aircraft of some sort, but as time passed and the tiny dot grew in size, it became apparent that this was no Bonanza or Skyhawk. We all watched in amazement as a Boeing 757 materialized in all it’s splendor. The landing gear extended and it flew a beautiful descending left turn right through the aerobatic box and dipped below our horizon.

“Well that was weird”, I thought. But hey, this was my first time at Marana. Perhaps there was some sort of charter flight coming in, or the airplane needed to divert for a medical emergency or mechanical problem.

The judging line maintains radio contact with the airport’s traffic frequency as well as the contest volunteers at the airport via a separate set of walkie-talkies, so we heard the sound of silence over the CTAF as this happened. I was later told that the Air Force Academy cadets, who had come out from Colorado Springs to compete in various glider categories, were on the runway getting a TG-10C glider (a military version of the Blanik L-13AC) hooked up to a tow plane when it became clear that the 757 planned on using that same piece of pavement. The cadets scrambled, clearing the runway in record time just as the Boeing touched down smoothly on runway 30, oblivious to everything going on around it.

Thanks to the radios, we were able to follow the action from the judging line even though we couldn’t see the airport from our location. It must have been shortly after they turned off onto a taxiway that the flight crew realized something wasn’t right, because the 757 stopped on the taxiway and just sat there. Marana’s airport manager tried to raise them on the airport’s frequency, 123.0 MHz, but had no luck. For what seemed like an eternity, there’s was nothing to hear but the sound of the Boeing’s two engines idling. Were their radios out, we wondered?

Mystery Solved

Then someone suggested trying 123.05, the frequency for nearby Pinal Airpark. It was at that moment everyone realized exactly what had happened. Wikipedia describes Pinal best:

Its main purpose is to act as a “boneyard” for civilian commercial aircraft. Old airplanes are stored there with the hope that the dry desert climate will mitigate any form of corrosion in case the aircraft is pressed into service in the future. It is the largest commercial aircraft storage and heavy maintenance facility in the world. Even so, many aircraft which are brought there wind up being scrapped.

Pinal and Marana are eight miles apart and share the same 12/30 runway orientation. The 757 was devoid of passengers and cargo; it was being ferried to Pinal for long-term storage after the Mexican airline which operated it declared bankruptcy. Since Pinal has no instrument approach procedures, the pilots had to make a visual approach into the airfield and simply fixated on Marana once they saw it.

Note the similarity between Pinal and Marana in terms of location, runway orientation, and relative size.

Note the similarity between Pinal and Marana in terms of location, runway orientation, and relative size.

Once the airport manager established radio contact with the crew, he didn’t want to let them move since he was concerned about the weight bearing capacity of the taxiways. However, the pilots gave him their current weight and were allowed to proceed. So they taxied back to runway 30 and just took off, presumably landing at Pinal a couple of minutes later.

That was the last I ever heard about that incident, but I’ve often wondered what happened to the pilots. Was the FAA notified? Was there an investigation? Did the airline know? And because they were in the process of liquidation, would it have mattered anyway? I suppose it’s all water under the bridge now.

Analysis

What makes this incident a little different from the others I discussed above is that it took place in broad daylight instead of at night. You’d think the pilots would have noticed the lack of a boneyard at Marana, but if it was their first time going into Pinal, perhaps it wouldn’t have been missed. When multiple airports exist in the same geographic area, they tend to have similar runway orientations because the prevailing winds are more-or-less the same.

As I was writing this, AVweb posted a story about an Associated Press report on this very subject.

Using NASA’s Aviation Safety Reporting System, along with news accounts and reports sent to other federal agencies, the AP tallied 35 landings and 115 approaches or aborted landing attempts at wrong airports by commercial passenger and cargo planes over more than two decades.

The tally doesn’t include every event. Many aren’t disclosed to the media, and reports to the NASA database are voluntary. The Federal Aviation Administration investigates wrong airport landings and many near-landings, but those reports aren’t publicly available.

The Marana 757 incident is probably one of those which does not appear in the ASRS database. At the very least, it doesn’t appear under the AVQ identifier for Marana Regional Airport. But if the press had found out about it (which they would have in this age of smartphones if there were passengers on board), I’m sure it would have created the same stir we’ve seen with the other incidents.

It might seem that wrong-airport landings are becoming more common, but the statistics show that to be a coincidence. “There are nearly 29,000 commercial aircraft flights daily in the U.S., but only eight wrong airport landings by U.S. carriers in the last decade, according to AP’s tally. None has resulted in death or injury.”

As a charter pilot, the thing I’m wondering about is whether “commercial aircraft” includes Part 135 flights. Based on the 29,000 figure, I’d assume it does not. Unlike scheduled airlines, charters can and do go to any airport at any time. On larger aircraft, the opspec can literally be global. You’d think this would make a wrong-airport scenario more common, but after years of flying to little corners of the globe, I think this kind of worldwide operation might lower the odds of wrong-airport landing since the destination is frequently unfamiliar and therefore the crew is already on guard.

Theoretically we should always fly that way. Unfortunately, human nature can make it tough to sustain that healthy sense of skepticism when a long day concludes at an accustomed airfield. Perhaps recognizing that fact is half the battle.


This article first appeared on the AOPA Opinion Leaders blog at http://blog.aopa.org/opinionleaders/2014/02/18/a-true-story-landing-at-the-wrong-airport/.

Mandated Spin Training

Mike Goulian - Extra 330SC

Unless you’re an instructor, practical spin training is not required by the FAA for any pilot. I’ve always been amazed by that. Even if you plan on performing spins intentionally, no training of any kind would be legally needed. Does that make sense to you?

But it gets worse. Flying a massive airliner with hundreds of people on board? No spin training required; these days, the computers will take care of everything. Stall shakers, stick pushers, and AOA probes are infallible!

Even if you are an instructor, your spin training could have been as simple as a single flight, perhaps a spin entry, a half turn of rotation, and a recovery. Call me crazy, but that seems… inadequate. My flight training experience was rather old school, consisting of tailwheels, spins, and aerobatics in stone-simple aircraft which bear little resemblance to today’s glass-infested airplanes. With all due respect to those who think I sound eerily like an 80-year old complaining about how “things ain’t how they used to be”, let me say that even a broken clock is right twice a day, so stick with me for a moment and see if you don’t agree.

There was a time when practical spin training was required for even the most basic pilot certification. Unfortunately those were the early, wild west days of flying, and I can only imagine spins weren’t approached by barnstormers with the level of forethought and consideration we typically give to those things today. As I’ve previously noted, they had a appreciable tolerance for risk back then. By the late 1940’s, conventional wisdom was that the training itself was leading to more accidents than inadvertent spins occurring in the wild.

Mandated spin training was discontinued by the Feds in 1949.

So how has this policy been working out for us? Not well, in my opinion. I’m often asked where my zeal for spin training comes from. The answer is simple: decades of accident reports. A search of the NTSB database for the word “spin” reveals 4,019 accidents — most of them fatal. That’s approximately 4,019 too many. It’s also worth noting that the database only goes back to 1962, so we can’t compare the statistics to what came before. According to the Air Safety Foundation:

Stall and spin-related accidents are among the most deadly types of GA accidents, with a fatality rate of about 28 percent, and accounting for about 10 percent of all GA accidents.

To be fair, some of the 4,019 NTSB reports referencing spins were helicopter accidents and others did not involved an aerodynamic spin. For example, a recent RV-6A accident report involved a loss of directional control on landing, leading the aircraft to “spin” off the runway. Even so, I still count nearly 20 spin-related crashes in the past twelve months. That doesn’t sound too bad when compared to the 50 year average, but keep in mind GA flying activity is down sharply (22 million fixed-wing GA hours in 2000 vs only 12 million a decade later).

Empirical evidence suggests that spin training might help avoid some of these tragedies. Unfortunately the average GA pilot doesn’t necessarily look at spins very favorably. More than any other maneuver, spins come with a long litany of baggage. Horror stories from other pilots, tall tales of spins that swallow the aircraft whole like Moby Dick, apprehensiveness about motion sickness, and so on. This requires delicate handling by those who do provide such training. Unfortunately, some still approach this using blunt force. “Just do it”. That works about as well as exposing a GA neophyte to advanced aerobatics. They run away and never return, while the bad experience only grows with each retelling over the years.

Teaching spins is not rocket science, but it must be done methodically. It’s very tempting to skip items that a more experienced pilot “ought to know”, but 99% of pilots spend 99% of their time flying straight-and-level. As a result, I’ve seen some really weird explanations from spin students about basic aerodynamics. One of the most common errors is a belief that aircraft stall at a specific speed rather than a specific angle of attack. If you’re always wings-level at 1-G, that might seem like gospel after decades of uneventful flying. If only the laws of physics would abide such misconceptions!

That’s why my spin training always begins with a thorough review of basic aerodynamics: how lift is developed, stalls, coordination, wing drops, and finally the mechanics of the spin itself. When teaching spins, the best advice for a CFI is: assume nothing.

In the air, it’s vital that the spins are worked up to slowly, beginning with stalls of various types. Remember this is not only a new activity for most trainees, but the aircraft is unfamiliar and the instructor is an unknown quantity as well. Earning the student’s trust early on allows them to focus on the spins later rather than questioning whether they’ll survive the experience. I’ve found falling leaf stalls are particularly valuable because the student must be comfortable with high angles of attack. If they gain nothing permanent from the training beyond this, it is a success, because we all must fly at high angles of attack during landing.

A quality spin training syllabus will include many things that even those who’ve got spin experience might not be familiar with: demonstrations of the difference between spins and spiral dives, drills to build confidence, techniques for assisting apprehensive students, advanced spin modes for those who take to it with greater ease, and so on.

One of the most common misconceptions about spin training is that its primary purpose is to help you recover from a spin. The truth is you aren’t terribly likely to encountering one inadvertently. If proper coordination is maintained (and it’s often not — that is why we have these stall-spin accidents), few pilots will encounter one in the heat of battle. No, the best reason for teaching spins is to eliminate fear of the unknown. Such fears can be debilitating at a moment when the pilot can least afford to be indecisive. The same can be said of upset recovery courses.

I’ll take it a step further and state that many landing accidents are caused by a lack of spin training. What does one have to do with the other? Students who are afraid of spins will be afraid of deep stalls. It’s only natural to fear the unknown. Those wing drops can be scary if you don’t understand what’s causing them, what will happen if you don’t correct properly, and how the resulting spin entry should be handled. A fear of stalls means they’ll be apprehensive about high angles of attack and low airspeeds. So they approach the runway with too much energy just to be on the safe side, with predictable results.

With all that in mind, it astounds me that the FAA proclaims spin training as unnecessary. I see people every day who have had no spin training and their flying is often marked by poor rudder skills, limited understanding of the related aerodynamics, and a lack of appreciation for the importance of coordination.

That’s the benefit of spins, and the reason I feel strongly it should be mandated as a central part of primary training. The stick-and-rudder skill deficiencies in today’s pilots didn’t start today. It began years ago when they were learning how to fly. Fixing it will require a journey into the past. It’s time to get back to basics, and you won’t cover all the bases unless spin training is a central part of the mix.