Time is Money

time_is_money2

One of the first things people discover about flying is that it requires an abundance of two resources: time and money. The money part is pretty obvious. Anyone who inquires about flight instruction at a local school will figure that one out before they even take their first lesson. The importance of time is a bit more nebulous.

When I began working as an instructor, I noticed that even in affluent coastal Orange County, at least one of those two assets always seemed to be in short supply. Those who had plenty of money rarely had much free time; they were financially successful because they worked such long hours. Younger pilots typically had fewer demands on their schedule, but funds were limited at best. It reminds me of Einstein’s famous mass-energy equivalence formula, E=mc2. But instead of matter and energy being interchangeable, it’s time and money. Benjamin Franklin took it a step further in a 1748 letter, concluding that “time is money”.

I learned to fly during a period when both of those elements were readily available. It was a luxury I didn’t appreciate — or even recognize — at the time. It’s probably for the best, since I would have been sorely tempted to spend even more on my addiction.

After flying Part 135 for the past three years, it’s interesting to note how those same limits apply to charter customers despite being much higher up on the proverbial food chain. These restrictions are the very reason Part 91/135 business aviation exists at all.

Case in point: I recently flew a dozen employees of a large retailer around the U.S. to finalize locations for new stores. They were able to visit ten cities in four days, spending several hours working at each destination. Out of curiosity, I ran our itinerary through booking sites like Kayak, Orbitz, and Travelocity to see how a group of twelve might fare on the airlines. Would you be surprised to learn that the answer is “not well”?

Our first leg, three hours in length, would have taken twelve hours and two extra stops on the airlines and actually cost more, assuming business class seats. Some of the subsequent legs wouldn’t have been possible at all on the airlines because they simply don’t serve those destinations. Overall, chartering the Gulfstream IV-SP cost less than trying to do the same trip on an airline. As far as time saved, on an airline, each of those ten legs would have required passengers to be at the airport 90 minutes in advance of their scheduled departure time. That alone would have wasted fifteen hours — the equivalent of two business days.

A chartered aircraft waits for passengers if they’re running late. If they need to change a destination, we can accommodate them. Travelers spend more time working and less time idle, literally turning back the clock and making everything they do more productive. And once we’re airborne, they can continue to do business, preparing for their next meeting and using the cabin as a mobile office. They can conference, spread out papers, and speak freely without worrying about strangers overhearing sensitive information.

This time/money exchange is present on every trip. Since I’m based in Los Angeles, our passengers are often in the entertainment industry. Imagine an artist or band who had a concert in Chicago on Monday, Miami on Tuesday, Denver on Wednesday, and Seattle on Thursday. They need to be in town early for rehearsals, interviews, and appearances. These tours sometimes last weeks or even months. Keeping a schedule like that would be nearly impossible without chartering. Imagine the cast of big budget film needing to be at film festivals, premieres, media interviews, awards shows, and such. Or the leaders of a private company about to go public or meeting with investors around the country prior to a product launch. Franklin was right: time is money.

When I fly on an scheduled airline, the inefficiency and discomfort remind me of why charter, fractional, and corporate aviation will only continue to grow. The price point of private flying doesn’t make sense for everyone, but for those who need it, it’s more than a convenience. It’s what makes doing business possible at all.


This post first appeared on the AOPA Opinion Leaders blog.

The Ab Initio Flaw

For decades, Japan Airlines ran an ab initio flight school in Napa, CA using Beech Bonanzas

Ecclesiastes tells us there’s nothing new under the sun. Where the pilot shortage debate is concerned, that’s definitely true. More than one industry veteran has wryly noted the “impending pilot shortages” of every decade since the Second World War. And considering the number of pilots trained during that conflict, you could say the shortage history goes back a lot further. How about to the very dawn of powered flight? I mean, Wilbur and Orville could have saved themselves tremendous time and money if only they’d had an experienced instructor to guide them!

Every “pilot shortage” article, blog post, and discussion I’ve seen centers around short-term hiring trends and possible improvements in salary and benefits for aviators. Nobody asked my opinion, but for what it’s worth, it seems both clear and logical that the regional airlines are hurting for pilots. The pay and working conditions at those companies are horrific. Major airlines will probably never have trouble attracting people, however. I don’t know if that qualifies as a pilot shortage. I tend to think it does not. It’s more of a shortage of people who are willing to participate like lab rats in a Part 121 industry cost-cutting experiment.

What the pilot shortage mishegas really has me thinking about is the long-term possibility of ab-initio schemes migrating to the United States and what a profoundly bad thing that would be for aviation at every level.

According to Wikipedia, “ab initio is a Latin term meaning ‘from the beginning’ and is derived from the Latin ab (‘from’) + initio, ablative singular of initium (‘beginning’)”. In aviation, it refers to a method of training pilots. In fact, it’s the de facto technique in use for the majority of airlines around the world. Essentially, foreign airlines will hire people off the street who have no flight time or experience. They are shepherded through the various ratings and certificates necessary to fly an Boeing or Airbus while on the airline’s payroll.

This might sound like a brilliant idea — and to an airline, it probably is. Imagine, no bad habits or “we did it this way at my last job” issues, just well-trained worker bees who have been indoctrinated from day one as multi-pilot airline crew members.

I don’t know if the airlines love ab initio or not. What I do know is that non-U.S. airlines use it because there’s no other choice. The fertile, Mesopotamian breeding ground of flying experience we call general aviation simply does not exist in those countries. Without GA’s infrastructure, there are no light aircraft, flight schools, mechanics, or small airports where aspiring pilots can learn to fly. Those who do manage to get such experience more often than not get it here in the United States.

To put it another way, the “pilot shortage” has been going on in foreign countries since the dawn of aviation, and ab initio is the way they’ve solved the problem in most places.

So what’s my beef with this method of training? To put it simply, in an era of atrophying pilot skills, ab-initio is going to make a bad problem worse. While it’s a proven way of ensuring a steady supply of labor, ab initio also produces a relatively narrow pilot who is trained from day one to do a single thing: fly an airliner. These airline programs don’t expose trainees to high Gs, aerobatics, gliders, sea planes, banner towing, tailwheels, instructing, or any of the other stuff that helps create a well-rounded aviator.

If airlines in the U.S. adopt the ab initio system, the pilots they hire will only experience things that are a) legally required, and b) directly applicable to flying a modern, automated airliner. Nothing else. After all, an airline will only invest what’s necessary to do the job. It’s a business decision. And in an era of cutthroat competition and razor thin profit margins, who could blame them?

The problem is, all those crap jobs young fliers complain about (and veterans seem to look back on with a degree of fondness) are vital seasoning for a pilot. He or she is learning to make command decisions, interact with employers and customers, and generally figure out the art of flying. It’s developing that spidey sense, taking a few hard knocks in the industry, and learning to distinguish between safe and legal.

These years don’t pay well where one’s bank account is concerned, but they are create a different type of wealth, one that’s often invisible and can prove vital when equipment stops working, weather is worse than forecast, or the holes in your Swiss cheese model start to line up.

Thus far, airline ab initio programs haven’t been a major part of the landscape here in the U.S. because our aviation sector is fairly robust. We are blessed with flying jobs which build the experience, skill, and time necessary for larger, more complex aircraft. But it’s easy to see why it might become an attractive option for airlines. For one thing, that darn pilot shortage. The cost of flying has risen dramatically over the past decade while the benefits (read: money) remain too low for too long. Airlines can cure the shortage by training pilots from zero hours… but at what cost?

Coming up through the ranks used to mean you were almost certain to be exposed to some of those elements. That’s why I believe ab initio would be just one more nail in the coffin of U.S. aviation, one more brick in the road of turning us into Europe. While I like visiting The Continent, I do not envy the size or scope of their aviation sector and sincerely hope we don’t go down that path.

Addendum

Apparently I’m not the only one with ab initio on my mind. The day before the deadline for this post, AVweb reported on a major announcement from Boeing:

Now, with its subsidiary company Jeppesen, [Boeing] will undertake ab initio airline pilot training to provide a supply of pilots with an “Airline Transport Pilot License” (certificate in the U.S.) and a Boeing type rating who “will be ready to move into the first officer’s seat,” according to Sherry Carbary, vice president of flight services.

Boeing’s ab initio training program is divided into two parts. The first, run by Jeppesen, will take an applicant—referred to as a cadet—who must hold a first-class medical at the time of application, and put her or him through a screening process. Those who pass will go through 12-18 months of flight training, resulting in, according to David Wright, director of general aviation training, an Airline Transport Pilot License. The second phase involves the cadet going to a Boeing facility for another two months of training where she or he gets a first exposure to a full-motion jet simulator, and that will result in a type rating in a Boeing jet. Wright said that cadets will come out of the $100,000-$150,000 program with 200-250 hours of flying time and will be ready to go into the right seat of an airliner.

Boeing jets are operated by major airlines, not regionals. An American pilot would typically sport several thousand of hours of flight experience before being hired there. Now Boeing is proposing to put 200 hour pilots into their airplanes on a worldwide basis. That won’t fly (yet) in the U.S., where 1,500 hours is currently required for an Airline Transport Pilot certificate. But I believe the ab inito trend bodes ill for airlines and general aviation alike.


This article first appeared on the AOPA Opinion Leaders blog.

We Don’t Train For That

Gulfstream G550 simulator

The tragic Gulfstream IV accident in Boston has been on my mind lately, partly because I fly that aircraft, but also because the facts of the case are disquieting.

While I’m not interested in speculating about the cause, I don’t mind discussing factual information that the NTSB has already released to the public. And one of the initial details they provided was that the airplane reached takeoff speed but the pilot flying was not able to raise the nose (or “rotate”, in jet parlance).

My first thought after hearing this? “We don’t train for that.” Every scenario covered during initial and recurrent training — whether in the simulator or the classroom — is based on one of two sequences: a malfunction prior to V1, in which case we stop, or a malfunction after V1, in which case we continue the takeoff and deal with the problem in the air. As far as I know, every multi-engine jet is operated the same way.

But nowhere is there any discussion or training on what to do if you reach the takeoff decision speed (V1), elect to continue, reach Vr, and are then unable to make the airplane fly. You’re forced into doing something that years of training has taught you to never do: blow past V1, Vr, V2, and then attempt an abort.

In this case, the airplane reached 165 knots — about 45 knots beyond the takeoff/abort decision speed. To call that uncharted territory would be generous. Meanwhile, thirty tons of metal and fuel is hurtling down the runway at nearly a football field per second.

We just don’t train for it. But maybe we should. Perhaps instead of focusing on simple engine failures we ought to look at the things that are causing accidents and add them to a database of training scenarios which can be enacted in the simulator without prior notice. Of course, this would have to be a no-jeopardy situation for the pilots. This wouldn’t be a test, it would be a learning experience based on real-world situations encountered by pilots flying actual airplanes. In some cases there’s no good solution, but even then I believe there are valuable things to be learned.

In the case of the Gulfstream IV, there have been four fatal accidents since the aircraft went into service more than a quarter of a century ago. As many news publications have noted, that’s not a bad record. But all four have something in common: each occurred on the ground.

  • October 30, 1996: a Gulfstream IV crashed during takeoff after the pilots lose control during a gusting crosswind.
  • February 12, 2012: a Gulfstream IV overran the 2,000 meter long runway at Bukavu-Kamenbe
  • July 13, 2012: a G-IV on a repositioning flight in southern France departs the runway during landing and broke apart after hitting a stand of trees.
  • May 31, 2014: the Gulfstream accident in Boston

In the few years that I’ve been flying this outstanding aircraft, I’ve seen a variety of odd things happen, from preflight brake system anomalies to flaps that wouldn’t deploy when the airplane was cold-soaked to a “main entry door” annunciation at 45,000 feet (believe me, that gets your attention!).

This isn’t to say the G-IV is an unsafe airplane. Far from it. But like most aircraft, it’s a highly complex piece of machinery with tens of thousands of individual parts. All sorts of tribal knowledge comes from instructors and line pilots during recurrent training. With each anomaly related to us in class, I always end up thinking to myself “we should run that scenario in the simulator”.

Cases like United 232, Apollo 13, Air France 447, and US Air 1549 prove time and time again that not every failure is covered by training or checklists. Corporate/charter aviation is already pretty safe… but perhaps we can do even better.


This article first appeared on the AOPA Opinion Leaders blog.

Trust Us — We’re Professionals

ipad-flight-deck

I’ve seen some ill-conceived policies emanate from the FAA over the course of my professional flying career. Some diktats are just busy work, while others fail to achieve an otherwise admirable end. But the worst are those that create the very hazard they are supposed to prevent.

Case in point: the recent adoption of 14 CFR 121.542(d), which prohibits the use of any personal electronic devices in flight. According to the FAA, this rule is “intended to ensure that non-essential activities do not affect flight deck task management or cause a loss of situational awareness during aircraft operation.”

Sounds great on the surface, doesn’t it? I mean, who could possibly oppose a rule which the Feds ostensibly see as the aeronautical equivalent of a ban on texting while driving? Keeping distractions at bay and pilots focused on flying has got to be a wonderful enhancement for safety.

But it’s not. The flight profiles of airlines, cargo haulers, charter companies, fractionals, corporate flight departments, and even private GA operators often dictate long stretches of straight-and-level flight with the autopilot on. Surely the FAA is aware of this. Now add in circadian rhythm issues associated with overnight flights, a dark cockpit with minimal radio traffic, and a flight crew pairing who have run out of things to talk about. There’s nothing to do but stare off into the inky darkness for hour upon hour. It’s a recipe for falling asleep.

Say what you will about distractions on the flight deck, but I’d much rather see a pilot peruse an issue of AOPA Pilot while in cruise than to have that individual zoned out or inadvertently napping. For one thing, the process of waking up takes time, whereas an alert human need only change focus. We already do that dozens of times on every flight anyway. Check in on the engine instruments, then answer a question from a passenger, then look out the window, then consult a chart. We do this all day long.

Is there much difference between reading a magazine and delving into the minutia of some random page of the Jeppesen manual when they’re both a form of busy work to keep the mind engaged during slow periods in cruise? I sincerely doubt a roundtable of experts in automation and human factors would have come up with a PED ban.

I can understand prohibiting them below, say, 10,000′ when the sterile cockpit rule is in effect. That’s a busy time for pilots, and non-essential items are naturally stowed at that point anyway. But electronic devices in and of themselves can be helpful in staving off the ultimate distraction. “Flight to Safety” author and Airbus pilot Karlene Petitt said it best:

Numerous studies have shown that one of the tips to help fall to sleep is to NOT watch television or work on your computer at a minimum of an hour before bedtime. The light suppresses melatonin production and stimulates brain activity. I’m not sure about you, but I want my pilots alert with stimulated brains. Give them something to do to keep them awake.

As many of you have probably noted, this rule is located in Part 121 and therefore only applies to scheduled airlines. From maintenance requirements to medical certification, their regs are the strictest around, so perhaps this seems much ado about nothing for a general aviation audience. But the FAA is of the opinion that this limitation should reach a lot further than United and Delta:

Recommended Actions: This prohibition on personal use of electronic devices on the flight deck in the final rule is applicable only to operations under part 121. However, Directors of Safety and training managers for all operators under parts 135 and 125, as well as part 91K, are encouraged to include operating procedures in their manuals and crewmember training programs prohibiting flightcrew members from using such devices for personal use during aircraft operation.

Will this eventually reach down to Part 91? Who knows. Even if it doesn’t, the real problem is that the FAA is spoon-feeding each and every individual action and prohibition to us without making allowances for the differences inherent in each type of operation. One-size-fits-all is wonderful for tube socks and scarves, but when it comes to flight safety, it’s just bad policy.

The smart way to go about this would be to leave it to the individual company, flight department and/or individual to determine what PED policy best serves the cause of safety. If you’re Southwest Airlines or a charter operator company flying VLJs, you probably aren’t flying long-haul trips and might be fine with reasonable PED limitations. Certainly using them below 10,000′ could be prohibited. But if you’re flying international cargo in a jumbo jet or hopping continents in a Global 5000 on legs of twelve or thirteen hours? That personal electronic device could be incredibly helpful in maintaining alertness.

Whether it’s a vocation or an avocation, pilots are a professional lot who can be trusted to make their own decisions about portable electronic devices.


This article first appeared on the AOPA Opinion Leaders blog.

The Hacked Airplane

gulfstream-on-snow-gradient

For better or worse, the relentless march of technology means we’re more connected than ever, in more places than ever. For the most part that’s good. We benefit from improving communication, situational awareness, and reduced pilot workload in the cockpit. But there’s a dark side to digital connectivity, and I predict it’s only a matter of time before we start to see it in our airborne lives.

Consider the recent Heartbleed security bug, which exposed countless user’s private data to the open internet. It wasn’t the first bug and it won’t be the last. Since a good pilot is always mindful the potential exigencies of flying, it’s high time we considered how this connectivity might affect our aircraft.

Even if you’re flying an ancient VFR-only steam gauge panel, odds are good you’ve got an Android or iOS device in the cockpit. And that GPS you rely upon? Whether it’s a portable non-TSO’d unit or the latest integrated avionics suite bestowed from on high by the Gods of Glass, your database updates are undoubtedly retrieved from across the internet. Oh, the database itself can be validated through checksums and secured through encryption, but who knows what other payloads might be living on that little SD card when you insert it into the panel.

“Gee, never thought about that”, you say? You’re not alone. Even multi-billion dollar corporations felt well protected right up to the moment that they were caught flat-footed. As British journalist Misha Glenny sagely noted, there are only two types of companies: those that know they’ve been hacked, and those that don’t.

Hackers are notoriously creative, and even if your computer is secure, that doesn’t mean your refrigerator, toilet, car, or toaster is. From the New York Times:

They came in through the Chinese takeout menu.

Unable to breach the computer network at a big oil company, hackers infected with malware the online menu of a Chinese restaurant that was popular with employees. When the workers browsed the menu, they inadvertently downloaded code that gave the attackers a foothold in the business’s vast computer network.

Remember the Target hacking scandal? Hackers obtained more than 40 million credit and debit card numbers from what the company believed to be tightly secured computers. The Times article details how the attackers gained access through Target’s heating and cooling system, and notes that connectivity has transformed everything from thermostats to printers into an open door through which cyber criminals can walk with relative ease.

Popular Mechanics details more than 10 billion devices connected to the internet in an effort to make our lives easier and more efficient, but also warns us that once everything is connected, everything will be open to hacking.

During a two-week long stretch at the end of December and the beginning of January, hackers tapped into smart TVs, at least one refrigerator, and routers to send out spam. That two-week long attack is considered one of the first Internet of Things hacks, and it’s a sign of things to come.

The smart home, for instance, now includes connected thermostats, light bulbs, refrigerators, toasters, and even deadbolt locks. While it’s exciting to be able to unlock your front door remotely to let a friend in, it’s also dangerous: If the lock is connected to the same router your refrigerator uses, and if your refrigerator has lax security, hackers can enter through that weak point and get to everything else on the network—including the lock.

We can laugh at the folly of connecting a bidet or deadbolt to the internet, but let’s not imagine we aren’t equally vulnerable. Especially in the corporate/charter world, today’s airplanes often communicate with a variety of satellite and ground sources, providing diagnostic information, flight times, location data, and more. Gulfstream’s Elite cabin allows users to control window shades, temperature, lighting, and more via a wireless connection to iOS devices. In the cockpit, iPads are now standard for aeronautical charts, quick reference handbooks, aircraft and company manuals, and just about everything else that used to be printed on paper. Before certification, the FAA expressed concern about the Gulfstream G280’s susceptibility to digital attack.

"There's an app for that!" The Gulfstream Elite cabin can be controlled from iOS devices.

“There’s an app for that!” The Gulfstream Elite cabin can be controlled from iOS devices.

But the biggest security hole for the corporate/charter types is probably the on-board wi-fi systems used by passengers in flight. Internet access used to be limited below 10,000 feet, but the FAA’s recent change on that score means it’s only a matter of time before internet access is available at all times in the cabin. And these systems are often comprised of off-the-shelf hardware, with all the attendant flaws and limitations.

Even if it’s not connected to any of the aircraft’s other systems, corporate and charter aircraft typically carry high net-worth individuals, often businessmen who work while enroute. It’s conceivable that a malicious individual could sit in their car on the public side of the airport fence and hack their way into an aircraft’s on-board wi-fi, accessing the sensitive data passengers have on their laptops without detection.

What are the trade secrets and business plans of, say, a Fortune 100 company worth? And what kind of liability would the loss of such information create for the hapless charter company who found themselves on the receiving end of such an attack? I often think about that when I’m sitting at Van Nuys or Teterboro, surrounded by billions of dollars in jet hardware.

Internet connectivity is rapidly becoming available to even the smallest general aviation aircraft. Even if you’re not flying behind the latest technology from Gulfstream or Dassault, light GA airplanes still sport some cutting-edge stuff. From the Diamond TwinStar‘s Engine Control Units to the electronic ignition systems common in many Experimental aircraft to Aspen’s Connected Panel, a malicious hacker with an aviation background and sufficient talent could conceivably wreak serious havoc.

Wireless data transmission for the GA cockpit: Aspen's Connected Panel

Wireless data transmission for the GA cockpit: Aspen’s Connected Panel

Mitigating these risks requires the same strategies we apply to every other piece of hardware in our airplanes: forethought, awareness, and a good “Plan B”. If an engine quits, for example, every pilot know how to handle it. Procedures are committed to memory and we back it up with periodic recurrent training. If primary flight instruments are lost in IMC, a smart pilot will be prepared for that eventuality.

As computers become an ever more critical and intertwined part of our flying, we must apply that same logic to our connected devices. Otherwise we risk being caught with our pants down once the gear comes up.


This article first appeared on the AOPA Opinion Leaders blog.