Takeoff Briefings for Singles

Posted by in Safety

I wonder why takeoff briefings are not typically taught or performed in single-engine airplanes. I think they should be, because they’re as important — if not more so — in a single than the multi-engine airplanes where they’ve long been standard procedure.

Air Safety Institute data show that regardless of category and class, the takeoff and landing phases are where most accidents occur. It’s true of the light GA airplanes you and I are so passionate about, and even more so for the Gulfstream IV I fly at work. In fact, since the G-IV went into service in 1987, there have only been four fatal accidents, but all of them were during takeoff or landing.

While thinking through the particulars of a low-altitude emergency prior to takeoff won’t help in every scenario, it certainly underscores the hazards inherent in flying close to the ground. A thoughtful takeoff briefing is important because emergencies and mechanical failures are as common and dangerous in singles as in twins. Things happen quickly when the engine quits at low altitude. Doesn’t it makes sense that the time to prepare for emergent situations is well before venturing into situations where they might occur?

I fly a wide variety of aircraft, and that provides additional rationale for a takeoff briefing because proper procedures vary from from one airplane (and situation) to another. For example, when flying a Cirrus, the ballistic recovery parachute is an option and a briefing helps reinforce when and where it will be used. On the other hand, if I’m flying a multi-engine recip, I’d probably want to keep flying if an engine quit after lift-off. But even in a typical GA single, there are still lots of decisions to make: where to land, which way to turn, when you can safety make a turnaround, etc. An intelligent pilot will consider the wind direction & velocity, runways in use, traffic conflicts, and more.

So why aren’t single engine pilots exposed to this during training? For one thing, today’s teaching methodology is based on material that’s been in use for half a century. Anyone who’s taken an FAA knowledge test can tell you that. Back then, airspace was simple, open fields were everywhere, and it was assumed you’d just glide down to landing. Today? It ain’t necessarily so.

Consider my neighborhood. At Santa Monica, you practically touch the roof of a gas station before reaching the numbers for runway 21. At Compton, homes are built so close to the field that residents can count the rivets dotting the underbelly of a landing aircraft’s fuselage. Airports like Hawthorne and Fullerton? Good luck. Obstacles in every direction, including some of the most densely populated parts of Southern California.

You might be thinking “Ah, my airport is nothing like that!”. Maybe so, but even if you’re based at a rural field, you probably fly to urban or mountainous airports from time to time. Something else to consider: if I’ve learned one thing from my seventeen years of flying, it’s that real world failures don’t always mimic our training. I’ve had several emergency situations, but not one of them was anything like the standard training scenarios.

The most common simulated emergency is a total engine failure. In reality, powerplant failures are often partial. You’ll lose one cylinder, but the rest still function. The decision making process is more complex in those cases. You have a partial power loss, but it’s entirely possible that amidst the vibration you’ll have enough power to maintain level flight. Do you fly around the pattern? Nurse it up high enough to turn around? Pull the power and land on the remaining runway? You’ve only got one chance to get it right. The pilot most likely to do that is the one who has thought these things through.

Because they’ve been around for half a century, you’d imagine the takeoff briefing would be pretty much set in stone, but even today they undergo frequent modification. Gulfstream recently changed it’s philosophy on this and emphatically states that “there is no such thing as a standard briefing”. I wholeheartedly agree with that approach. Aircraft weight, wind, weather conditions, alternate options, and many other variables are always changing. Note that none of those factors are limited to multi-engine transport-cateogry jets — they are equally applicable to a single engine trainer.

What we’re really talking about here is the role of a pilot. Those who know me can attest to my affinity for high quality stick-and-rudder skills. But anyone can learn to physically maneuver an airplane. The safest pilots are the ones who manage risk effectively. That means having a contingency plan for as many “what-ifs” as possible before shoving the throttle forward for takeoff.